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Detection and Prognostics on Low Dimensional
Systems
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Abstract—This paper describes the application of known
and novel prognostic algorithms on systems that can be de-
scribed by low dimensional, potentially nonlinear dynamics.
The methods rely on estimating the conditional probability
distribution of the output of the system at a future time
given knowledge of the current state of the system. We
show how to estimate these conditional probabilities using
a variety of techniques, including bagged neural networks
and kernel methods such as Gaussian Process Regression
(GPR). The results are compared with standard method
such as the nearest neighbor algorithm. We demonstrate
the algorithms on a real-world data set and a simulated
data set. The real-world data set consists of the intensity of
an NH3 laser. The laser data set has been shown by other
authors to exhibit low-dimensional chaos with sudden drops
in intensity. The simulated data set is generated from the
Lorenz attractor and has known statistical characteristics.
On these data sets, we show the evolution of the estimated
conditional probability distribution, the way it can act as a
prognostic signal, and its use as an early warning system.
We also review a novel approach to perform Gaussian
Process Regression with large numbers of data points.

Index Terms—Prediction, Gaussian process regression,
anomaly detection, Lorenz model,NH3 laser system, log-
likelihood function, k-nearest neighbor, prognosis.

I. I NTRODUCTION

This paper addresses the problem of making predic-
tions of future events on systems that can be described by
low-dimensional dynamical equations. We assume that
we are given data from a data generating process that can
be functionally described by the following equations:

ht = Γ(h∗
t−1) (1)

xt = Ψ(x∗
t−1,h

∗
t , ut) (2)

yt = Ω(xt) (3)

We assume that the functionΓ determining the evo-
lution of the hidden system stateht is unknown. We
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also assume that the functionΨ, which generates the
observed output of the system is unknown. We assume
that the vectorx is an N dimensional state vector,
and x∗

t−1 is its history for the lastD time steps:
x∗

t−1 = [xt−D,xt−D+1, ...,xt−1]. The quantityut is
the observed system input, andyt is the observed scalar
system output. We assume that the entire data that is
available, covering both inputs and outputs is given by
the set(X ,Y).

The hidden stateht is assumed to correspond to
different mode configurations within the system. In the
case where we assume that the hidden state takes on
discrete values,ht switches betweenM modes, each
affecting the output dynamicsΨ. In the case of a failure
of the system,ht could move to a failed state, thus also
changing the nature of the observed output. In other
applications,ht could be a continuous state variable,
modeling a slow progression of the system from a normal
state to a failed state [27]. Because we assume that we
do not know the output functionΨ or the hidden state
ht, we cannot rely on it to help us determine whether or
not the observedyt is anomalous. The problem that we
address in this paper is to develop a method to discover
whether or not the current observed valueyt represents
an anomaly based on the observed history of the system.

Several approaches have been discussed in the litera-
ture to address the problem of making future predictions
on systems that can be described by Equations 1, 2 and
3. Traditional approaches include those developed in the
system identification community [16]. Other techniques
include Hidden Markov Models, where the transitions
between theM hidden discrete states are modeled as
a first-order hidden Markov process [22]. The HMM
allows for the dynamics of the system to be modeled but
requires that a procedure (such as clustering or learning
vector quantization) be used to develop a discrete rep-
resentation of the system output. Other popular methods
to convert the time series into symbolic representations
include Piecewise Aggregate Approximation (PAA) [17]
and Symbolic Aggregate approXimation (SAX) [18].
Once the symbolic representation is generated it can be
analyzed using the HMM. For many applications, the



dwell time within a hidden state does not follow the
exponential decay that arises from the standard HMM
algorithm. Dong and He [7][8] have recently developed
this method for analyzing systems with hidden discrete
transitions (as shown in Figure 1) using a hidden semi-
Markov model (HSMM) where the dwell time within a
state is modeled by a Gaussian distribution. Their work
shows that the HSMM can lead to superior performance
on real-world applications compared with the standard
HMM formulation.

Fig. 1. This figure shows a finite state machine of the system states.
The finite state machine has a potential path for progression from
normal operation (clear circles) to the failed state (solid circle). The
model allows for the system to move from a failed state back to normal
operation which models intermittent problems that can arise incomplex
systems. For generality, we have included bi-directional arrows and a
fully connected graph.

II. M OTIVATION

We demonstrate the detection and prognostic capa-
bilities of our algorithm on the data from the Lorenz
model and theNH3 laser system because it is a suitable
test bed for building prognostic algorithms for several
reasons including:

• The NH3 laser system can be modeled by low-
dimensional differential equations, thus allowing
for the application of Takens’ Theorem from
nonlinear dynamics. This theorem gives the
mathematical foundation for us to take past values
of the time series to predict future values.

• The laser intensity can be approximated by
the Lorenz equations which are known to
exhibit chaotic behavior for certain values of the
parameters which puts a bound on the long-term
predictability of the intensity. Chaos theory tells
us that short-term predictions may be possible for
chaotic time series, but long-term predictions are
impossible. The time horizon for such predictions

is given by the Lyapunov time constant of the
system, which can be derived from data or directly
from the governing equations of a system [6].

• The NH3 laser data has been widely used in the
time series prediction community for over a decade
to test machine learning algorithms for detection,
prediction, and model validation [39], [15].

Methods that are suitable for making predictions on
this system may be transferable to other systems. The
capability to predict time series that arise from nonlinear
chaotic systems could be useful in several other real-
world applications that exhibit chaotic behavior.

Fault detection systems make use of either passive
or active sensing devices, connected in a discrete or
continuous fashion [5], [34], [35], [29]. These sensing
devices monitor one or more state variables depending
on the nature of the application. For some systems,
these measured state variables can be analogous to state
variables described by a set of differential equations. For
example, Yamanaka et. al.[37], [1], [36] presented a sim-
ple analytical model to explain the interaction between
crack planes using van der Waals inter-atomic force. This
approach addressed the problem of detecting a closed
crack in a mechanical system using ultrasonic testing.
The paper proposed a new detection technique based on
an analysis of the subharmonic components which are
generated due to the nonlinear interaction of the crack
surface and the forcing function. The authors showed that
under certain parametric conditions the vibration signals
that represent the crack opening displacement can exhibit
chaotic behavior.

Foong et al.[10] conducted a separate study to shown
that the response of nonlinear dynamical systems can
have chaotic oscillation under fatigue crack growth. Most
physical phenomenon are complex and high dimensional
in nature which can make the modeling process diffi-
cult. In some cases, it is possible to approximate the
high-dimensional system with low-dimensional dynam-
ics which are informative and interpretable.

III. B ACKGROUND

A time series is a collection of observations repre-
sented sequentially as a function of time. A significant
body of work is to create mathematical models that
predict the system behavior from a set of observations.
The approach taken in the machine-learning community
has been to create potentially nonlinear statistical models
that learn a mapping from past states to future states
without requiring extensive knowledge of the physical
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system. In many cases, methods such as neural networks
can produce high quality predictions [32].

The focus of the current study is on the analysis of
time series obtained from a low-dimensional nonlinear
dynamical system that exhibits chaotic behavior. The ob-
jective is to develop a prognostic algorithm that models
the system dynamics using past observations and fore-
casts the future system behavior while providing a mea-
sure of uncertainty in the predictions. This measure of
uncertainty can be interpreted as the model’s confidence
in the prediction. If the model’s confidence reduces at
a certain point, it could be indicative of an unexpected
forthcoming event, thus leading to a prognostic signal.

The idea to predict the future values of a time series
as a linear combination of the preceding values was
first introduced by Yule [38] as the auto-regressive
process (AR). A comprehensive literature review on
conventional techniques to select a model that could
be used to forecast the behavior of the time has been
provided in [32]. The authors provide insight on local-
linear models, global autoregressive, moving average,
and neural-networks based approaches such as the Radial
Basis Function (RBF) based model. K-nearest neighbors,
a local average model is determined by taking a weighted
sum of outputs for thek inputs that are near the query
vector. Using different numbers of nearest neighbors, it
is possible to find the optimal value ofk for which the
RMSE is minimized.

McNames [20] presented a new method of optimizing
the model parameters in order to minimize the multi-
step cross validation error. In previous work [20], the
author proposed the adoption of nearest trajectory model
for time-series prediction. This method searches the
closest trajectory points in the reconstructed state space
as opposed to nearest neighbors. A comparative study
on different nonparametric methods including nearest
neighbors, RBF, and nearest trajectory methods to pre-
dict chaotic time series can be found in [15]. The idea to
obtain iterative time series predictions using a regression
tree based approach has been addressed by Badel et. al.
[2].

Gaussian Process models have gained popularity in
the machine learning community because many machine
learning algorithms including neural networks, splines,
and other regression methods are special cases of Gaus-
sian Processes. These models are intended to predict
the probability distribution of a future observation as
characterized by the mean and variance of a Gaussian
distribution. The variance acts as a measure of the
uncertainty associated with each model prediction on
future observations. A detailed review on various sources

of uncertainties in modeling time series has been well
documented by Draper [9].

In 1996, Neal [21] showed that Gaussian Process (GP)
models are equivalent to the neural networks with one
hidden layer with an infinite number of hidden neurons.
Rasmussen [23] introduced the empirical formulation
of Gaussian Processes in terms of probabilistic model
using Bayesian treatment. Mackay [19] and Seeger [26]
extended this research to show the relationship of the
Gaussian Process model to several other popular ma-
chine learning techniques like generalized Radial Basis
Functions (RBF), splines, and support vector machines.

Gaussian processes are fully specified by a mean func-
tion and covariance function. For zeros-mean process,
the latter plays the prime role to characterize the process.
The covariance function is equivalent to a Mercer kernel
function that measures the similarity between two input
points. In statistical terms, the kernel function calculates
the covariance between the outputs corresponding to
different inputs. The choice of the covariance function
typically depends on the prior assumption on the smooth-
ness and continuity of the underlying function generated
by a process. Mathematically, a covariance function is
valid if it produces a nonnegative definite covariance
matrix for a given set of input points. Mackay [19]
provided a detailed description on a wide variety of
covariance functions.

IV. M AIN IDEA

The main idea [40], [41] discussed in this paper
is to build a predictive model that estimatesyt given
the history of past observations. Rather than creating a
single “point-estimate” ofyt, we estimateP (yt|y

∗
t−1). In

this formulation, the mean of this quantity (obtained by
computing the expected value) will produce an estimate
for the future value ofyt while the variance of this dis-
tribution quantifies the uncertainty in the predictions. As
that uncertainty changes with time, it can be indicative of
an unanticipated change in the data generating process.
This change could be due to several issues, including
the movement of the hidden stateht from one state to
another.

For a true prognostic capability on low-dimensional
systems, i.e., one where a forecast is made at a time
horizon significantly far in the future compared to the
natural frequency of the system, we need the ability
to make long term predictions. Such predictions are
theoretically impossible for chaotic systems [6] if the
prediction horizon is of the same order as the Lyapunov
time. The Lyapunov time is the amount of time that is
required for a volume of phase space to expand to a size
that completely covers the underlying dynamic attractor.
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Fig. 2. The top panel in this figure shows a method for generating
predictions of the quantityP (yt|y∗

t−1
) using Gaussian Process re-

gression. The lower panel shows a method to do iterated predictions,
where a statistic such as the mean output of the model is fed backinto
the model to generate the next output.

There are at least two ways to make predictions about
an event in the future. One method is to make the
prediction in such a way that the estimateP (yt+τ |y

∗
t−1)

for a fixed durationτ in the future. Ifτ is significantly
longer than the natural period of the system as measured
by the low frequency modes in the Fourier spectrum of
the signal, such a model would make predictions that
are fixed in time; it would only make predictions for
those events that are exactlyτ units in the future. The
second method is to generateiterated predictionswhich
rely on developing a model to estimateP (yt|y

∗
t−1) and

then feeding the output of the model back into the input,
thus producing an estimate ofP (yt+1|µt, y

∗
t−1), where

µt is a statistic (such as the mean) computed from the
distribution computed at timet [25], [30]. This form of
iterated prediction is depicted in Figure 2.

V. A LGORITHMS

We provide a brief overview of three algorithms
that we use for estimatingP (yt|y

∗
t−1). The first two

algorithms, the k-nearest neighbor and the bagged neu-
ral network algorithms, have been developed for many
applications and have been widely discussed in the

literature [13]. These algorithms provide a benchmark
for comparison against the performance of the Gaussian
Process regression which has become popular in the
machine learning community over the last ten years.

Once these algorithms are appropriately trained, it is
possible to iteratively predictq steps ahead in time for
any given test case. It should be noted that for a chaotic
time series the forecast ofq steps in future is restricted
to a prediction horizon that can be calculated from the
Lyapunov exponent, if it is known. However to predict
within this limit, it is necessary to train the model so that
it learns the underlying dynamics of the system from the
historical observations. The extraction of the dynamics
can be achieved through delay coordinate embedding.

According to Taken’s theorem [4],[28] given a finite
set of scalar observations, it is possible to reconstruct the
attractor in the phase space with an appropriate choice
of time delay (τ ) and embedding dimension (D). Given
a time seriesxt of length M the delay vectorszt with
lengthMr = M−(D−1)τ data points can take the form
as shown in Equation 4. Here the embedding dimension
is an integer number and the delay is a duration with
consecutivel sample points i.e.τ = l × 1

fs

, wherefs is
the frequency at which the data has been sampled. Given
xt, X serves as an input data matrix of size(D−1)×Mr

and theith column ofX represents a vector delayed by
(i − 1)τ , wherei ≤ (D − 1). The corresponding output
is denoted byY, termed as the target vector as shown
in Equation 4.

A. K-Nearest Neighbor

The k-nearest neighbor algorithm uses all available
input dataX and associated output dataY until time t

to produce a prediction ofyt+1. Specifically, to estimate
P (yt|y

∗
t−1), given x∗

t we identify the k vectors in
the data set that are closest to that vector in terms
of the Euclidean distance. The mean of the outputs
associated with thosek vectors is used as an estimate of
the expected value of the distribution,EP (P (yt|y

∗
t−1))

and the variance of the outputs is used to estimate
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V arP (P (yt|y
∗
t−1)). This method does not attempt to

summarize the data in any way and simply uses a
simple ‘look-up’ table to estimate the parameters of
the distribution. These estimates are based on heuristic
principles regarding the local distribution of data at
time t.

B. Bagged Neural Networks

The bagged neural network [3] model consists of
developingN feedforward multi-layer perceptrons using
the available input and output data. Each model is made
by taking a sample of data (with replacement) from the
data set(X ,Y). If each network is labeled asGi(θi),
the overall estimate ofEP (P (yt|y

∗
t−1)) is given by:

EP (P (yt|y
∗
t−1)) =

N∑

i=1

Gi(Xi, θi) (5)

The estimate of the variance in the prediction, and thus
the associated uncertainty is given by:

V arP (P (yt|y
∗
t−1)) =

N∑

i=1

[Gi(Xi, θi)−EP (P (yt|y
∗
t−1))]

2

(6)
This estimate of the uncertainty is a function of the
heterogeneity of the data samplesXi. In the event that all
samples are identical, the only variation in the estimates
will be due to variation in the initial starting point of
the optimization procedure. This method is related to
Ensemble Methods in machine learning and are widely
used to estimate the mean and variance of the target
distribution [31].

C. Gaussian Process Regression

A Gaussian Process is a stochastic process such that
each finite subset of variables in the process is mul-
tivariate Gaussian distributed [24]. In 1996, Neal [21]
noted that if the weights and biases in a neural network
are drawn from a Gaussian distribution, then as the
number of hidden units increases, the prior distribution
over functions defined by such networks will converge
to a Gaussian Process. This important result led many
in the machine learning community to research Gaussian
Processes and support vector machines.

Following the notation and derivation in Rassmussen
and Williams [24], Gaussian Process Regression is a
generalization of the standard linear regression model.
We begin with a brief review of their Bayesian derivation
of linear regression with the modelf(x) = xT w and an

additive Gaussian noise, we have:

f(x) = xT w (7)

y = f(x) + ǫn

ǫn ∼ N(0, σ2
n)

where x is the test vector andw is a set of weights.
Assuming that we choose a prior distribution for the
weights as Gaussian with zero mean and covariance
matrix Σp, and that the noise is Gaussian and inde-
pendent and identically distributed, with varianceσ2

n,
we compute the posterior probability distribution of the
weights given the data(X ,y):

P (w|X,y) = N(
1

σ2
n

A−1Xy, A−1) (8)

where A = 1
σ2

n

XXT + Σ−1
p . In order to make a pre-

diction, given a test input̃x, we compute the predictive
distribution by averaging over the weightsw and obtain:

P (f(x̃)|x̃,X,y) = N(
1

σ2
n

x̃T A−1Xy, x̃T A−1x̃) (9)

whereA = 1
σ2

n

XXT + Σ−1
p . Using the so-called ’ker-

nel trick’, we obtain Gaussian Process Regression by
assuming that we have a mappingΦ(x) that maps the
originalN dimensional data into a large, possibly infinite
dimensional space. Replacing the independent variable
x with its transformed version leads to the following
posterior distribution:

P (f(Φ(x̃))|Φ(x̃),X,y) =

N(
1

σ2
n

Φ(x̃)T A−1Xy,Φ(x̃)T A−1Φ(x̃)) (10)

This implies that the posterior distribution (Equation
10) is also Gaussian, with the predicted meanµ̂(x̃)
and varianceσ̂(x̃) for a given test input(x̃). After
substituting the value ofA and doing some simple matrix
manipulations the predicted mean and variance, in the
feature space, can be expressed as:

µ̂(x̃) = Φ(x̃)T ΣpΦ(x)[σ2
nI + Φ(x)

T
ΣpΦ(x)]

−1
y

(11)

σ̂(x̃) = Φ(x̃)T ΣpΦ(x̃) − Φ(x̃)T ΣpΦ(x)[σ2
nI

+ Φ(x)
T
ΣpΦ(x)]−1Φ(x)T ΣpΦ(x̃) (12)

Equation 11 and 12 pose a significant computational
complexity in situations where the number of data points
is large. One type of complexity is regarding the amount
of time required to learn the hyperparameters used
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while constructing the covariance function. The common
approach to addressing this issue is to estimate the vector
of hyperparameters and the noise term by maximizing
the log-likelihood of the model parameters given the
data.

In this research we are using the RBF stationary
covariance function given in Equation 13:

C(x, x′) = θ1 exp

(

−
1

2

m∑

i=1

(xi − x′
i)

2

σ2
l

)

+ θ2 + θ3δij (13)

whereθ=[θ1,θ2,θ3,σl] is the vector of hyperparameters
of the covariance function. The parametersθ1 and σl

control the overall scale in vertical and horizontal varia-
tions respectively. Hereθ2 is the bias term andθ3δij is
the noise term whereθ3 is the variance of the noise and
δij is the Kronecker delta function.

During the training of the Gaussian Process, these hy-
perparameters are optimized based on a random sample
from the input data set. Thus, the hyperparameters can
be optimized with anymc random points selected from a
pool ofn input points, where(mc ≤ n). As mc increases
the computational complexity increases exponentially.

A common way to estimate the vector of hyperpa-
rameterθ is to maximize the log-likelihood by taking
its partial derivatives with respect toθ and performing
gradient-descent search. If the training covariance matrix
K = σ2

nI + Φ(x)
T
ΣpΦ(x), the log-likelihood function

can be expressed as:

L(θ) = −
1

2
log |K| −

1

2
yT K−1y −

1

2
n log(2π) (14)

Now the derivative ofL(θ) with respect to each
hyperparameterθj takes the form of:

∂L(θ)

∂θj

= −
1

2
Trace

[

K−1 ∂K
∂θj

]

+
1

2
yT K−1 ∂K

∂θj

K−1y

(15)
Further details of the cost function and optimization

algorithm can be obtained in the following reference
[19]. The algorithm for generating iterated predictions
using a Gaussian Process is given in Figure 3.

D. Gaussian Process Calculation using V-formulation

The second factor which influences the computational
time is the inversion of[σ2

nI + Φ(x)
T
ΣpΦ(x)] which

is an n × n matrix (Equation 11). As the number of
data points grows, inverting a matrix of sizen leads
to operations with complexityO(n3) which is unfea-
sible due to memory and processing limitations. To
handle this issue, we have adopted the Gaussian process

method using V-formulation developed by Foster et. al
[11][12]. In the proposed technique, the low rank ap-
proximation of larger matrices is calculated using partial
Cholesky factorization. In Equation 11, then×n matrix
(Φ(x)

T
ΣpΦ(x)) can be approximated byV V T , where

the n × m matrix V is constructed by partial Cholesky
decomposition (PCD). These algebraic operations can be
summarized as follows,

[Φ(x)
T
ΣpΦ(x)]n×n

PCD
→ Vn×m.V T

m×n (16)

[Φ(x̃)T ΣpΦ(x)]p×n
PCD
→ V ∗

p×m.V T
m×n (17)

Equation 11 can be rewritten as,

µ̂(x̃) = V ∗V T [σ2
nI + V V T ]

−1
y (18)

This result leads to Lemma 1 from [11]:

Lemma 1:V T [σ2
nI +V V T ]−1 = [σ2

nI +V T V ]−1V T

The V formulation takes advantage of the above
lemma to reconstruct both Equation 11 and 12. The
details on the proof can be obtain in [11]. Using Lemma
1, one can rewrite Equation 18 as,

µ̂(x̃) = V ∗[σ2
nI + V T V ]

−1
V T y (19)

Equation 19 is the basis of the so-called V-
formulation. Instead of directly inverting then×n matrix
[σ2

nI + V V T ], the algorithm addresses the inversion of
n×m matrix [σ2

nI + V T V ], using the partial Cholesky
factorization. For smallerm, the regression algorithm
with V formulation is much faster and always numer-
ically stable. Further details on the adopted approach
to approximate the Gaussian process calculation can be
obtained in the following literature [11][12].

VI. L ORENZ DYNAMICS AND NH3 LASER DATA

The algorithms described in the previous section were
tested on a data set from anNH3 laser, whose inten-
sity profile exhibits buildups followed by a collapse.
The exact time instances of these collapses are unpre-
dictable. Researchers have shown the connection of the
experimentally measured electric field fromNH3 laser
system to that of the dynamics of Lorenz model [33].
The Lorenz equation, as proposed by Hankel [14], can
approximate the dynamical behavior of the optically
pumpedNH3 single mode laser field. The equations for
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Input: X (Input), t (target),C (Covariance Function)
Rmax (maximum rank),̃x (test input) andNiter

(Number of iterations).
Step 1: Randomly select a subsetm of n input points
to train hyperparameters (wherem <n).
Step 2: Optimize hyperparameter vectorθ.

a) Initialize θ=[θ1,θ2,θ3,σl]
b) Compute covariance matrixC usingn

input points.
c) Compute low-rank approximation of

covariance matrix constructed in (b).
d) Construct log-arithmetic likelihood function.
e) Maximize cost function with respect to each

hyperparameter.
f) Obtain the optimized hyperparameter values.

Step 3: Construct Model.
g) Redefine low-rank approximation of covar-

iance matrix using optimized hyperparameters.
Step 4: Make Predictions

for k := 1 to Niter

h) Compute covariance matrix between test
points and active set.

i) Redefine low-rank approximation of
covariance matrix constructed in (g).

j) Compute and Storekth predictive mean
and variance.

k) Updatex̃ with kth predicted mean.
end

Output: µ̂(x̃) (Predicted mean),̂σ(x̃) (variance)

Fig. 3. The Iterative Gaussian Process Algorithm.

the Lorenz model can be expressed as follows:

u̇ = −σ(u − v) (20)

v̇ = −u(w − r) − v (21)

ẇ = uv − bw (22)

This set of differential equations describes a nonlinear
dynamical system. For specific values ofσ, b and r,
the evaluation of the state vector(u, v, w) gives rise to
the famous Lorenz attractor. Figure 4 shows a typical
three dimensional representation of the Lorenz attractor,
numerically simulated using a4th order Runge-kutta
integration scheme. The state variables and the control
parameters in the Lorenz equation are closely related to
the physical quantities of the laser physics. The details
of these relationships and their interpretations can be
found in [14]. Ḧubner showed that the square of the
state variable (u) at each time instant is analogous to the
electric field intensity field of theNH3 laser system. The
Lorenz-like chaotic patterns observed in the intensity

−10 −5 0 5 10 −10

0

10
5

10

15

20

25

v
u

w

Fig. 4. This figure shows a three dimensional representation of the
Lorenz attractor evolved with time. The integration time stepis 0.05
second withσ = 2, b = 0.25 andr = 15. Hereu, v, w are the state
variables.

pulsation of the laser can be theoretically generated using
Lorenz model with the control parameters adjusted to
σ = 2, b = 0.25 andr = 15 (Figure 5).

For this study, we use data from an optically pumped
81.5 micronNH3 FIR laser. The data consists of a time
series of 25,000 samples taken at a sampling rate of
12.5 MHz. The data is quantized using an 8-bit analog-
to-digital converter. The data has a signal-to-noise ratio
of 300. Further details of the measurement setup can
be found in the literature by Ḧubner et al [14]. We
normalize the laser intensity to lie between 0 and 1 by
dividing each observed value by the maximum value of
255.

From here on, to avoid any confusion, we will label
the electric field fromNH3 laser system asexperimental
data set and theu2 obtained from Lorenz model as
simulation data set. Given these data sets, the challenge
is to build a model that can predict the behavior of the
laser system as far into the future as possible with a
measure of confidence.

VII. A NALYSIS

We have tested the algorithms discussed in this paper
using the data from Lorenz model and theNH3 laser
system.

A. Data Set Selection

1) Experimental Data Set:Given the 25, 000 laser
intensity measurements, we divided them into two con-
tiguous groups for training and testing as described
below. The training data was comprised of the first 1200
samples in the data set. After training we run the model
against multiple test sets that were arbitrarily constructed
such that the test sets did not overlap with any subset
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Fig. 5. This figure shows the history of the square of the statevariable
(u) of the Lorenz model evolved with time. The integration time step
is 0.05 second withσ = 2, b = 0.25 andr = 15.

of the training data. For clarity, however, we show the
results of the algorithms on three test sets only. These
three cases will be referred to as test A, B, and C
respectively. To find the optimal value of parameters
such as the embedding dimensionD and time-delayτ an
exhaustive search was conducted over a specified range
of discreteD and τ values. With a given training set,
each combination ofD andτ has been used to built the
model and thereafter tested on a separate test set. For
each combination, the normalized mean square error of
the prediction was calculated for the same test set. Using
this technique, we were able to identify the value ofD

andτ which minimize the normalized mean square error
of the predictions. The grid search yieldedD = 35 and
τ = 1. The normalized mean squared error for a set of
predictions{ŷi}

N

i=1 is given by:

NMSE =
1

Nσ2
T

N∑

i=1

(ŷ − y)2 (23)

whereyi is the observed value,̂yi is the predicted value,
andσT is the standard deviation of the true values over
all the N points in the test set.

Given the training data set, we used the time series
embedding methodology to generate a target vector as
shown in Equation 4. Thus, the input data formed a
matrix of size34 × 1166 with a corresponding target
vector of size1166 × 1. Figure 6 shows a plot of the
laser’s intensity as a function of time for the training
and test sets.

2) Simulation Data Set:The first 100 points of the
simulated data obtained from the Lorenz model were
discarded to remove transient effects. From the remain-
ing set of data points, the first 1200 points were used
for training purposes and the remaining kept for testing.

Figure 5 represents the time history of the training set
used in this analysis. For the simulated data the optimal
value ofD andτ was found to be 140 and 1 respectively,
using the same grid search approach described above.
Thus, the input data formed a matrix of size139×1061
with a corresponding target vector of size1061×1. The
simulation test set was constructed beginning at time step
1201 and will be referred as test S for the rest of the
paper.
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Fig. 6. This figure shows the intensity of theNH3 laser as a function
of time for the training and test sets. The objective of this paper is to
create algorithms that use the first 1200 points of training data (dark
color) to predict the collapses in the laser intensity in theremaining
450 points while providing a measure of confidence in the prediction.
That measure of confidence will be used as a prognostic signal.
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Fig. 7. This figure shows the normalized mean squared error (NMSE)
of the prediction as a function of the rank of the low-dimensional ap-
proximation to the kernel matrix used in Gaussian Process Regression.
The analysis was run for different percentage of input samplepoints
that have been used to optimize the hyperparameters of the covariance
function.

B. Results

We tested each of the four algorithms on these data
sets:k-nearest neighbors (k-NN), bagged multilayer per-
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Fig. 8. The four plots of this figure show the iterative predictions (of four algorithms) overlapped on the true test data asa function of time.
Both GP and GP-V algorithms are both able to model the local highfrequency oscillations and the collapse event accurately.This is the same
test case corresponding to the simulation data.

ceptrons (B-MLP), Gaussian Process Regression (GP),
and Gaussian Process Regression developed with the V-
Formulation (GP-V). We arbitrarily chosek = 30 for the
k-nearest neighbors algorithm and averaged the output of
10 MLPs each with 10 hidden units for the bagged MLP
algorithm. For the GP method, all1166 (experiment)
and 1061 (simulation) sample points of the input data
matrix were used to compute the covariance matrix. We
used a random sample of50% of the input data to learn
the model hyperparameters in Equation 13 for the GP
and GP-V algorithms. The gradient descent to find the
optimal set of hyperparamtersθ was done using a scaled
conjugate gradient algorithm and with a maximum of10
function evaluations.

The GP-V algorithm has one additional parameter
compared to the standard GP algorithm: we must choose
the optimal rank of theV matrix. In this study, the
rank was chosen such that it minimized the NMSE on
a hold-out data set that did not overlap with the test
set. Figure 7 shows the plot of the NMSE (average
of 10 runs) as a function of rank for theNH3 laser
data set and this analysis was performed for different
percentage of input data points that has been used to
optimize the hyperparameters of the covariance function
(Equation 13). For both simulation and experimental data
sets, the optimal ranks were estimated as10 times the
corresponding dimension(D − 1) of their input data
matrix. For each test, the algorithms are initialized with
(D − 1) past values of the given test set, and then we
generate iterated predictions as described in Section V.

TABLE I
THE TABLE SHOWS THE NORMALIZED MEAN SQUARED ERROR

(NMSE) FOR THEGAUSSIAN PROCESS(GP), GAUSSIAN PROCESS

WITH V FORMULATION (GP-V), THE BAGGED NEURAL NETWORK

(B-MLP) AND THE k-NEAREST NEIGHBOR ALGORITHMS FOR FOUR

DIFFERENT TEST SETS(A, B, C AND S). QUANTITIES IN BOLD

DENOTE THE MINIMUM OBSERVEDNMSE.

Test GP GP-V B-MLP k-NN
A (1201-1500) 0.1669 0.0474 1.5675 1.1996
B (2001-2220) 0.4873 0.1155 1.0431 1.2234
C (3201-3570) 0.2377 0.8747 1.1001 1.0767
S (1201-1550) 0.1622 0.1798 1.4627 1.2219

We compared the forecasts of the four algorithms
described in this paper (GP, GP-V, B-MLP,k-NN) using
the four test sets (A, B, C and S). The results, shown in
Table I indicate that the Gaussian Process methods (with
or without the low-rank approximation) produce superior
results compared to the other algorithms. For test cases
A and B, Gaussian process with V-formulation (GP-
V) emerges with a better score compared to standard
Gaussian Process (GP). In Figure 8, the true values
overlapped with the predicted values (represented by×)
of the four algorithms that have been used for test S.
Both methods (GP and GP-V) modeled the local (rapid)
oscillations as well as the global trend in the data. These
methods also provided superior predictions regarding
the timing of the collapse in the laser intensity when
compared tok-nearest neighbor (k-NN) and bagged
multilayer perceptron (B-MLP). Figure 9 shows the
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boxplot generated from NMSE values of the test set (of
experimental data) for all the algorithms trained over
100 randomly chosen data sets. The NMSE has been
calculated on a separate test set that did not overlap
with any subset of the data used for training. From
Figure 9 it can be concluded that standard Gaussian
process (GP) and Gaussian process with V-formulation
(GPV) completely outperformsk-nearest neighbor (k-
NN) and bagged multilayer perceptron (B-MLP) on pre-
diction task. This is because the medians of the NMSE
of predictions for both standard Gaussian process and
Gaussian process with V-formulation are much smaller
compared tok-nearest neighbor and bagged multilayer
perceptron. Also it can be seen that the performances
of standard Gaussian process and Gaussian process with
V-formulation are very comparable.

GP GP−V B−MLP k−NN
0

0.5
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N
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E

Fig. 9. This figure shows the boxplot representation of the test set
using all the four algorithms. The NMSE is calculated based on300
sample points of the test set.

To compare the rate at which prediction errors ac-
cumulate, we computed the cumulative prediction error
using the following formula:

CT (k) =

k∑

i=1

(ŷi − yi)
2 (24)

where the indexk can hold any value from1 to N andN

is the total data points in the test set. In this formula,CT

represents the total normalized squared error until time
stepT . Using this measure, the comparative performance
of the four tested algorithms yielded an interesting result.
Both the Gaussian Process methods (GP and GP-V)
showed significantly better performance than the bagged
MLP and thek-nearest neighbor approaches. Figure 10
shows the accumulated error as a function of time
for test set A. This plot also indicates that the GP-V
algorithm outperforms the GP algorithm as indicated by

the slower rate of growth in the cumulative error after
the collapse. In the post-collapse region, the cumulative
error drastically increases. The occurrence of a collapse
event results in the loss of the GP and GP-V’s prediction
capability.
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Fig. 10. This figure shows the cumulative errorCT as a function of
time for the four tested algorithms for the test data shown in Figure 6.
The Gaussian Process and the Gaussian Process with V-Formulation
outperform the other models in terms of the cumulative error. The GP-
V algorithm has the best performance out of all the models tested. The
vertical line shows the time of the collapse in the laser intensity.

Another measure which we used to determine the
performance of the algorithm is based on the estimated
prediction horizon which is the amount of time that
it takes for the cumulative error to exceed a certain
(arbitrary) threshold. The estimated prediction horizon
(in sample points) is shown in Table II for each of
the tested algorithms. The GP and GP-V methods had
the best prediction horizon, with the GP-V algorithm
showing the best overall performance across the four test
sets.

TABLE II
THIS TABLE SHOWS THE TIME(IN SAMPLE POINTS) AT WHICH THE

CUMULATIVE ERROR CT EXCEEDS THE ARBITRARY THRESHOLD

OF UNITY FOR EACH OF THE FOUR MODELS TESTED ON THE FOUR

TEST DATA SETS. THIS NUMBER IS INDICATIVE OF THE MODEL’ S

PREDICTION HORIZON. THE GAUSSIAN PROCESS WITH

V-FORMULATION SHOWS THE BEST PERFORMANCE WITH THE

LONGEST PREDICTION HORIZON. THE NUMBERS IN BOLD INDICATE

THE BEST PERFORMING ALGORITHM FOR EACH TEST SET.

Test GP GP-V B-MLP k-NN
A (1201-1650) 274 346 122 119
B (2001-2450) 184 209 144 115
C (3201-3650) 312 313 235 160
S (1201-1550) 342 341 94 241

The threshold to determine the prediction horizon
is dependent on the prognostic application. Since the
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cumulative error is a monotonically increasing function
of time, the threshold will only be exceeded once.
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Fig. 11. The top panel of this figure shows the iterated prediction
of the GP-V model as a function of time and the bottom panel shows
the uncertainty in the prediction as estimated by the Gaussian Process.
Notice that the uncertainty in the prediction increases dramatically just
before the collapse. A thresholded version of this signal isused for
prognostics.
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Fig. 12. The top panel of this figure shows the observed test data as a
function of time. The lower panel shows a prognostic signal which is
developed by placing a threshold on the uncertainty of the predictions.
The GP and GP-V algorithms are both able to indicate the collapse
before the event actually occurs. This is the same test case illustrated
in Figure 6.

Figure 11 shows the GP-V predictions for test data
set A along with the associated prediction variance. We
believe that the use of the variance signal for prognostics,
offers a better way to utilize these algorithms (GP and
GP-V) since the variance signal is generated in addi-
tion to the predictions of future observations. Also this
signal is a measure of uncertainties associated with the
predictions. The figure shows that the GP-V algorithm
can model both the local variations in the data along
with the collapse events.

The prognostic signal is developed by placing a
threshold on the estimated variance. When that variance
crosses the threshold it is used to indicate that a collapse
will occur in the near future. The threshold value can
be used to control the false-positive and true-positive
rates. Figure 12 shows the true observations for test set
A along with the prognostic signal. The lower panel of
the figure shows the prognostic signal generated by the
GP and GP-V algorithms for the test data setA along
with the position of the true point of collapse. Note that
the prognostic signal is set to high, ahead of the actual
collapse event. Thus, the algorithm’s assessment of its
uncertainty increases as the collapse approaches. Once
the estimated uncertainty crosses a preset threshold, the
output is set to “high”’ status, indicating a probable
collapse might occur.

Table III shows the number of sample points by which
the prognosis signal leads the actual collapse point for
the four test sets. For test setA, both GP and GP-V flags
the warning at the same time instance but this may vary
for other test cases as demonstrated in Table III.

TABLE III
THE VALUES IN THE FOLLOWING INDICATES THE NUMBER OF

SAMPLE POINTS BY WHICH THE PROGNOSTIC SIGNAL LEADS THE

TRUE COLLAPSE POINT. THE PROGNOSIS SIGNAL IS SET TO UNITY

ONCE THE UNCERTAINTY ASSOCIATED WITH EACH PREDICTION

CROSSES A PREDEFINED THRESHOLD.

Test GP GP-V
A (1201-1650) 24 24
B (2001-2450) 30 8
C (3201-3650) 34 42
S (1201-1550) 175 167

In spite of the superior performance over other ex-
isting methods, the applicability of standard Gaussian
process (GP) for making predictions using large data
sets is limited by the computational complexity of the
algorithm.

The V-formulation, developed by Foster et. al. can
resolve the computational issues of the algorithm. Fig-
ure 13 represents the computational time involved in
training each algorithm with varying sizes of (training)
data sets. The k-NN algorithm shows to be the fastest
since it requires a match of one vector against the library
of N data points. However, in most test cases, k-NN has
the worst performance in prediction as shown in Table I
and Figure 9. Figure 13 also demonstrates the superior
capability of GP-V in handling both time and memory
requirements with increasingly large training sets. For
the laser data, the GP-V formulation shows more than
a 50% reduction in computation time for a data set
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more than an order of magnitude larger. The standard
GP is unable to handle the memory requirement when
the number of training points exceeds a certain range as
indicated in Figure 13. Figure 13 shows the use of23000
sample points for training and the remaining2000 points
for testing. On other data sets, our studies indicate that
GP-V can perform well on data sets with more than a
million points.
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Fig. 13. This figure shows a comparison between the standard GP
algorithm, the GP-V algorithm, the B-MLP and the k-NN in terms
of computational time. Though k-NN shows the least time complexity
but very often it has the worst performance in prediction as shown
in Table I and Figure 9. The GP-V shows superior performance with
respect to computational time, particularly for larger data sets. Note
that the x-axis is logarithmic.

VIII. C ONCLUSIONS

This paper has discussed methods to generate prog-
nostic signals for dynamical systems that can be de-
scribed using low dimensional differential equations.
The dynamical system studied exhibits low-dimensional
chaos and provides a good framework for studying
prognostic algorithms. The paper demonstrates the use
of two standard algorithms for time series prediction:
the k-nearest neighbor and neural network approach.
We have discussed the novel application of Gaussian
Process Regression to prognostics and demonstrated its
superior performance. Furthermore, we have described
the formulation and application of a novel Gaussian Pro-
cess Regression method recently developed by other re-
searchers and have applied it to the prognostics problem
and provided a comparative study of the performance of
various approaches.

The methods we have demonstrated can accurately
predict the high frequency components of the signal
along with the trend of the signal. We have shown a
novel method based on analyzing the cumulative error
signal to compute the prediction horizon for a prognostic

model. This prediction horizon is tunable with a single
parameter and provides a consistent framework for com-
paring predictive algorithms.

The predictions made by the algorithms shown here
generally correlate well with the original signal, with
the exception of the region near the collapse of the
signal. Near the region of collapse, the Gaussian Process
algorithm supersedes the other algorithms in terms of
prediction accuracy and length of the prediction horizon.

The Gaussian Process method provides a principled
approach to modeling uncertainty in predictions. This
“error bar” is generated by the algorithm and is used
as a prognostic signal. These signals can be used to
test prognostic capabilities for a variety of dynamical
systems.
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[14] U. Hübner, C. O. Weiss, N. B. Abraham and D. Tang,Lorenz-
like chaos inNH3-FIR lasers (data set a), Time Series Predic-
tion:Forecasting the Future and Understanding the Past (N.Ger-
shenfeld A. Weigend, ed.), 1994.

[15] J.D.Wichard and M. Ogorzalek,Iterated time series prediction
with ensemble models, Proceedings of the 23rd IASTED Interna-
tional Conference on Modeling, Identification and Control,2004.

[16] J. Juang,Applied system identification, Prentice-Hall, 1994.
[17] E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra,Dimen-

sionality reduction for fast similarity search in large time series
databases, Knowledge and Information Systems3 (2001), no. 3,
263–286.

[18] J. Lin, E. Keogh, S. Lonardi, and B. Chiu,A symbolic represen-
tation of time series, with implications for streaming algorithms,
June 2003, Proc.of 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 2–11.

[19] D.J.C. MacKay,Gaussian processes - a replacement for su-
pervised neural networks?, Advances in Neural Information
Processing Systems9 (1997).

[20] J. McNames,Local averaging optimization for chaotic time series
prediction, Neurocomputing48 (Oct. 2002), 279–297.

[21] R. M. Neal, Bayesian learning for neural networks, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[22] L. R. Rabiner,A tutorial on hidden markov models and selected
applications in speech recognition, Proceedings of the IEEE77
(1989), no. 2, 257–286.

[23] C. E. Rasmussen,Evaluation of gaussian processes and other
methods for non-linear regression, 1996, Ph.D. thesis,Department
of Computer Science, University of Toronto.

[24] C. E. Rasmussen and C.K.I Williams,Gaussian processes for
machine learning, MIT Press, 2006.

[25] T. Sauer, Time series prediction by using delay coordinate
embedding, Time Series Prediction: Forecasting the Future and
Understanding the Past (N. Gershenfeld A. Weigend, ed.), 1994.

[26] M. Seeger,Gaussian processes for machine learning, Interna-
tional Journal of Neural Systems14 (2004), 1–38.

[27] A. N. Srivastava,Discovering system health anomalies using data
mining techniques, Proceedings of the 2005 Joint Army Navy
NASA Airforce Conference on Propulsion (2005).

[28] F. Takens,Detecting strange attractors in turbulence, Lecture
Notes in Mathematics (L. S. Young D. A.Rand, ed.), vol.
898/1981, Springer Berlin / Heidelberg, 2007, 366–381.

[29] I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theoryand
Applications, Plenum Press, New York, 1967.

[30] E. Wan,Time series prediction by using a connectionist network
with internal delay lines, Time Series Prediction: Forecasting the
Future and Understanding the Past (N. Gershenfeld A. Weigend,
ed.), 1994.

[31] M. J. Way and A. N. Srivastava,Novel methods for predicting

photometric redshifts from broad band photometry using virtual
sensors, The Astrophysical Journal647 (2006), 102–115.

[32] A. Weigend and N. Gershenfeld,Time series prediction: Fore-
casting the future and understanding the past, Addison-Wesley,
1994.

[33] C. O. Weiss, W. Klische, N. B. Abraham and U. Hübner,
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